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We observed zebrafish (Danio rerio) movement continuously in response to conflicting stimuli (food and pred-
ator). Linear parameters (i.e., speed, acceleration, locomotory rate) were lower when food was provided to the
arena, whereas angular parameters (i.e., turning rate) decreased in response to predator. Self-organizing map
(SOM) trained with parameters revealed that stop duration, stop number, and x- and y-coordinates played
major roles in determining variations in movement. Behavior patterns (e.g., rightward movement to food)
were identifiable in different clusters in association with parameters responding to sources and order of stimuli.
Distribution shapes obtained from the SOM were suitable for identifying responses of test organisms. Accelera-
tion intermittency in movement data in different distribution shapes addressed data structure variation caused
by sources and order of stimuli. The order of stimuli was influential in determining the behavioral states in the
following courses of stimulus provision (i.e., addition of secondary stimulus and removal of the initial stimulus).
Predator-first stimuli caused stronger response behaviors than food-first stimuli. Computational analysis of re-
sponse behavior to stimuli could be an additional indicator of stress in animals.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Animals in the wild often face a conflict between starvation and
predation risk through their daily life events. Since starvation and pre-
dation both put strong selective forces on animals, their behaviors
should be finely adapted to make the correct choice at the right mo-
ment, and the decision to approach food or escape would be critical
for their survival in relation with surrounding conditions (Burns and
Rodd, 2008). Behaviors under such conflicting situations have been em-
pirically and theoretically investigated in numerous taxa (Lima, 1998a).
Hunger often causes animals to accept a greater risk to obtain food
(Lima, 1998b; Lima and Dill, 1990; Milinski, 1993). However, few stud-
ies have closely investigated how temporal patterns of risk influence the
trade-off between foraging and anti-predator behavior (Ferrari et al.,
2010). Accordingly, foraging attempts under different histories of risks
should be tested. The risk allocation model (Lima and Bednekoff,
1999) expects that animals exposed to frequent risk should forage
more actively during safe periods when compared to other animals
that experience infrequent risk (Ferrari et al., 2009).
82 51 510 2262.
Numerous studies have focused on how feeding activity or speed
changes under the risk of predation (Lima, 1998a). Almost all species ex-
hibit decreased movement, increased refuging, or both in response to in-
creased risk of predation. However, there are some exceptions (Houtman
and Dill, 1994). For example, larval Ambystoma salamanders showed de-
creased movement, but only in the absence of a refuge; otherwise, move-
ment increased in an effort to reach a refuge (Sih and Kats, 1991).
However, few studies focusing on continuous behavioral changes have
been conducted to date in conflicting situations during the course of stim-
uli provision. In the present study, we continuously tracked the position of
individual zebrafish exposed to both food and predator in an aquarium.

Individual movement tracking has been reported with respect to
monitoring stressors in the environment since the 1980s (Baganz
et al., 1998; Chon et al., 2005; Kwak et al., 2002; Lawrence and Smith,
1989; Lemly and Smith, 1986; Stark, 1993). Various computational
methods have been utilized to extract information from complex
datasets describing response behaviors including correlation analysis
(Dray et al., 2010; Liu et al., 2011a; Tobin and Bjørnstad, 2003), param-
eterization (e.g., fractal dimensions, permutation entropy) (Andrew
et al., 2005; Weis and Weis, 1974), and data transform (e.g., Fourier
transform, wavelets) (Chon et al., 2004; Kim et al., 2006). Informatics
techniques including self-organizing maps (Chon et al., 2004; Liu
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Fig. 1. Schematic diagramof observing zebrafish response behavior in response to conflict-
ing stimuli when food and predator were provided in the observation arena.
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et al., 2011b; Park et al., 2005) and multi-layer perception (Kwak et al.,
2002) have also been used to identify response behavior patterns
following treatment with toxic chemicals. Additionally, the hidden
Markov model has also been employed to address behavioral state
changeswith transition probabilitymatrix (TPM) under stressful condi-
tions (Liu et al., 2011b; Nguyen et al., 2011).

However, previous studies have primarily focused on behavioral
changes in response to anthropogenic agents and have not extensively
addressed the response to stress in conflict. Considering the urgency
of feeding or escaping for survival of animal, we investigated whether
conflict would cause changes in behavioral states that differed during
the course of stimuli provision. Based on computational methods
including the self-organizingmap (SOM) and intermittency test, contin-
uous movement was analyzed to characterize changes in response be-
haviors of zebra fish according to the source and order of stimuli.

2. Materials and methods

2.1. Test organisms

We used adult zebrafish (Danio rerio) as the test species. Zebrafish
are considered as one of the most suitable vertebrate model organisms
for various biological tests (Blaser and Gerlai, 2006; Fetcho and Liu,
1998; Levin et al., 2007). Due to vulnerability to chemical stress and
availability of biological information (e.g., genomics), the species has
high potential for use as an indicator of risk and behavior monitoring
(Kato, 2004; Liu et al., 2011b; Park et al., 2005; Swain et al., 2004).
Wild type D. rerio individuals were obtained from a local fish dealer as
a stock population and reared for two weeks before observation
(Blaser and Gerlai, 2006) at a temperature of 25 ± 1 °C and pH of
7.1 ± 0.3 under a light/dark cycle of 14/10 h (lights on at 7:00 h
and off at 21:00 h). Two fluorescent lights (26 W) were placed approx-
imately 50 cm above the container (Miller and Gerlai, 2007) for rearing
and observation. Test organisms were randomly selected from the
stock and placed individually in a glass aquarium (water volume;
400 mm × 200 mm × 100 mm) for observation. Other rearing and ob-
servation methods were conducted as described by Liu et al. (2011b).

The commercial food, Tetramin (Tetra ®), was used to visually stim-
ulate feeding behavior of the test organisms. Zebrafish were fed
Tetramin once a day in the rearing container; therefore, they recognized
it as their food (Gerlai et al., 2009). In addition to food, a predator was
introduced to the observation arena. Most predators of zebrafish in
the wild are fish-eating fishes (Engeszer et al., 2007); therefore, in this
study,we visually presented Oscarfish, Astronotus orbiculatus (approx-
imately 12 cm in size) obtained from a local fish dealer.

2.2. Observation system

The movement tracks were recorded using an observation system
consisting of an observation aquarium, camera, timer, video frame grab-
ber card (Mor/2VD,MatroxMorphis®) and software for image recogni-
tion system (Kwak et al., 2002; Park et al., 2005). The 2-D movement
track of the test organisms was scanned from the side view in two di-
mensions (Power, 1984) using a color CCD camera (Hitachi KP-D 20
BU®) during the observation period. We selected 0.25 s as the time
frame based on our previous studies. Since our goal was to observe
the overall changes in movement of fish in response to the chemical
treatment, this time interval was sufficiently short for presenting the
responses of test organisms with respect to spatial displacement
(Chon et al., 2004; Liu et al., 2011b; Park et al., 2005). Sudden responses
may also occurwithin 0.25 swhen theorganisms are exposed to stimuli,
especially to predators. Extremely short termmovement behaviors such
as sudden retreat and shaking would require an extra resolution
(e.g., close-up, 3D), including partial body movement; however, such
an evaluation was beyond the scope of the present study. In order to
examine intentional responses of fishes in a longer period based on
currently available devices, we observed response behaviors ranging
from 1–10 s in two dimensions (Blaser et al., 2010).

2.3. Experimental procedure

The placement of test organisms and two stimuli, food and predator,
in experimental arenas is shown in Fig. 1. To avoid cross effects of the
two stimuli in the same observation aquarium, we only exposed the
test organisms to the stimuli visually. Food was wedged between two
pieces of 4 cm× 4 cm transparent tape and attached to the rightwall in-
side the arena, with the top of the food at the water surface (Fig. 1). The
predator was placed in another aquarium that was in contact with the
right side of the observation arena. To align the height of the predator,
we set a plate 10 cm above the bottom of the predator's aquarium
(Fig. 1). Consequently, the food and predator were visible by zebrafish
in the observation arena, but inaccessible. Olfactory signals from food
and the predator were not allowed in the arena.

In this study, the term “condition” was used to separate temporal
order of the key stimulus (food or predator) provided to the test organ-
isms. Under condition 1, food was provided as the initial stimulus,
followed by predator as a secondary stimulus, whereas predator was
given first followed by food under condition 2. The term “phase” was
used to indicate sequential processes between treatments. Specifically,
P1, P2, P3 and P4 referred to no stimulus, introduction of the initial stim-
ulus, introduction of the secondary stimulus, and removal of the initial
stimulus from the arena, respectively. Prior to testing, the organisms
were acclimated to the observation system for 30 min (Gerlai et al.,
2006). We began to record the movement of zebrafish starting with
phase 1 separately under conditions 1 and 2. These different conditions
were adopted to observe the short-term behavioral changes under
foraging opportunity or predation risk. Previous studies indicated that
animals show different behavioral patterns when they are safe or
endangered (Ferrari et al., 2009). Based on preliminary tests, 10 min
was selected as the observation period for each phase. A total of 30
individuals were observed for each condition, but 13 individuals with
a low level of noise in time series data were selected for analysis. The
movement segments (in 1 s) were selected when the percentage
with an irregularly high speed (N200 mm/s either in the x coordinate
or y coordinate) was less than 2%.

2.4. Computational analysis

2.4.1. Self-organizing map
A self-organizing map (SOM) consisting of two layers of input and

output was used to conduct non-linear projection of data onto a space
in two dimensions and provide a patterned map for input data
(Kohonen, 2001). There is no universal rule to determine the size of
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the SOM (Lin and Chen, 2006). Vesanto et al. (2000) proposed that the
number of map units could be approximately as m = 5√ n, where n is
the number of data samples. According to this proposal the number of
nodes was 500 (n = 10,000) for each condition in this study. We set
the vertical size of the SOM to be slightly longer than the horizontal
size in order to show the highest variance in the input data along with
the vertical axis while the following variancewould be accordingly pre-
sented on the horizontal axis (Liu et al., 2011b). Finally the number of
nodes used for trainingwas 25 (vertical) × 20 (horizontal) in this study.

Based on preliminary studies and previous reports (Ji et al., 2007; Liu
et al., 2011b), the following nine parameterswere selected as input data
for the SOM: x-coordinate (cm, mean x-coordinate during segment
time), y-coordinate (cm, mean y-coordinate during segment time),
speed (cm/s, distance between two consecutive coordinates divided
by time), acceleration (cm/s2, speed change divided by time), stop num-
ber (n, stop number during segment time), stop duration (s, total stop
time during segment time), locomotory rate (cm/s, movement distance
without stop time), turning rate (rad/s, angular change divided by
time), and meander (rad/cm, angular change per movement distance).
All parameters were scalar values. Similarly acceleration used in the
intermittency test was scalar since the value was calculated from the
difference between speeds. For each phase, 2500 segments (1 s) were
randomly selected separately for conditions 1 and 2 (10,000 segments
in total for each condition), and 9 parameters were used as variables.
Initially, this dataset was used to train the entire dataset for conditions
1 and 2. In addition, the movement segments were separately trained
in each phase for each condition. Since the total number of segments
ranged 7735–7800 (595–600 segments multiplied by 13 individuals)
in each phase, the number a little less than 10,000was used for training
for each phase in this study. A fewdata points (b5)were not recorded in
different individuals and treated as missing data in some phases.

Distribution parameters were further used as input data for training
of overall movement shapes. Themean values and standard deviation of
x and y coordinates were calculated in different phases under different
conditions and were used as input variables for the SOM training with
52 (13 replications × 4 phases) sample units. According to preliminary
studies to identify grouping efficiently, 6 (vertical) × 4 (horizontal)
nodes were used for training, slightly less than the recommended num-
ber (36) by Vesanto et al. (2000).

The distance, dj(t) at the j-th node on the SOM between weight at
iteration time t and the input vector was calculated through learning
processes:

dj tð Þ ¼
Xp−1

i¼0

xi−wij tð Þ
h i2

ð1Þ

where xi is the value of the i-th parameter,wij(t) is the weight between
the i-th variable and the j-th node on the SOM, and p is the number of
the variable. The best matching neuron, which has the minimum dis-
tance, was selected as the winner. For the best matching neuron and
its neighborhood neurons, the new weight vectors were updated as:

wij t þ 1ð Þ ¼ wij tð Þ þ a tð Þ x tð Þ−wij tð Þ
h i

ð2Þ

where t is the iteration time and a(t) is the learning rate. The learning
process of the SOM was conducted using the SOM Toolbox (Vesanto
et al., 2000) developed by the Laboratory of Information and Computer
Science at the Helsinki University of Technology (http://www.cis.hut.fi/
projects/somtoolbox/) in a Matlab environment (The Mathworks,
R2009). The initialization and training processes were conducted fol-
lowing the suggestions made by the SOM Toolbox by allowing optimi-
zation of the algorithm. A detailed description regarding application
of the SOM to ecological data has been provided by Park et al. (2003).
To reveal the degree of association between the SOM units, Ward's
linkage method (Ward, 1963; Wishart, 1969) was used to cluster the
movement data according to the Euclidean distance. The linkage
distances were rescaled at 0–100%.

2.4.2. Intermittency analysis
Intermittency is defined as the probability distribution of the

shadowing time during which the data are consecutively higher than
a threshold level (Fig. 2) (Do and Lai, 2004; Do et al., 2003; Hirsch
et al., 1982; Sauer et al., 1976). The intermittency of time-series data
in nonhyperbolic chaotic systems shows universal and non-universal
features of scaling. At small shadowing time, there are universal algebra-
ic scaling behavior with exponent−3/2 in log–log plot, however the in-
termittencies at large shadowing time become non-universal (Do et al.,
2003; Hirsch et al., 1982). Intermittency has been reported in various
fields, including coordination of muscular systems (Fernando and
Lawrence, 1968; Gawthrop et al., 2011), chemical kinetics (De la
Fuente et al., 1996; Pomeau et al., 1981), laser models (de Valcárcel
et al., 1995), and fluid dynamics (Pomeau and Manneville, 1980).

Intermittency has been further applied to behavior and ecological
studies. In ecology, flow intermittency regarding biodiversity determi-
nation in stream ecosystems has recently been investigated (Bogan
et al., 2013; Datry et al., 2011). Harnos et al. (2000) analyzed scaling
and intermittency in the temporal behavior of nesting gilts (Harnos
et al., 2000). Mashanova et al. (2010) reported a truncated power law
in aphid movement in addressing an alternate pattern of fast and slow
phases. However, intermittency in response behavior of animals under
chemical stress has not been extensively studied, especially under
conflicting situations.

In this study, in order to reveal the structural properties of themove-
ment data, we addressed the probability distributions of the shadowing
time in time-series acceleration on fish observed in a confined area. We
used the mean value of acceleration as the threshold after testing
various levels of the threshold (Fig. 2) from 0.125 to 2 times the mean
value. The shadowing times and their probability distributions were
expressed on a logarithmic scale.

3. Results

3.1. Parameter estimation

To address behavioral changes across phases under each condition,
parameter differences between the previous and next phases were
measured during the course of stimulus provision (i.e., phase 1-2,
phase 2-3, and phase 3-4) (Fig. 3). To present parameter differences,
the values in current phase were subtracted from those in previous
phase for each individual. The values in Fig. 3 are the secondary calcula-
tion obtained by difference between two scalar values. Minus valuewas
obtained when the value in the previous phase was smaller than the
value in the next phase. The averages of parameter differences over 13
individuals are presented in Fig. 3 with paired t-test (n = 13). Overall,
stop duration, stop number, and y-coordinate changed substantially
under both conditions (Fig. 3). Specifically, stop duration and stop num-
ber increased, whereas y-coordinate decreased in phase 1-2. Significant
differences were observed in both conditions except for stop number in
condition 2. The difference was especially high for the y-coordinate in
condition 1 (p b 0.001) (Fig. 3). Speed, acceleration and locomotory
rate showed substantial changes across phases, but the pattern was re-
versed in the two conditions. Specifically, an initial decrease occurred
between phases 1 and 2 in condition 1, whereas increase occurred
in condition 2. However, statistical significance was only observed in
condition 1 (p b 0.01).

The values of the x-coordinate, turning rate and meander showed
greater differences under condition 2, and all three variables decreased
significantly in phase 1-2. It should be noted that the x-coordinate only
decreased significantly in phase 2-3 (p b 0.01) under condition 1
(i.e., when predators were added as a secondary stimulus). The linear
parameters in movement (speed, acceleration, and locomotory rate)

http://www.cis.hut.fi/projects/somtoolbox/
http://www.cis.hut.fi/projects/somtoolbox/
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decreased when foodwas provided initially under condition 1, whereas
angular parameters (turning rate and meander) decreased when pred-
ator was provided initially under condition 2 (Fig. 3). This trend was
also observed when food or predator was added as secondary stimulus,
but significant differences were not observed.

3.2. Training with SOM

Using parameters as input data (see Section 2.4.1), movement seg-
ments (1 s time interval) were trained with the SOM by combining all
phases under both conditions. Six common groupswere obtained in dif-
ferent phases under two conditions (Fig. 4a and d) according to cluster-
ing based on Ward's linkage method (Ward, 1963; Wishart, 1969).
Component profiles visualized on the SOM showed overall vertical posi-
tions of stop duration in a similar configuration under both conditions,
although orientation of the profiles was sometimes reversed on the
map (i.e., the direction of the gradients was upside down) (e.g., Fig. 4c
and f). Parameters related to position (y-coordinate), stop (stop number
and stop duration), and direction change (turning rate and meander)
played a key role in determining variance of the movement data,
forming a gradient along the vertical axis on themap in both conditions.
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The x-coordinate was also important, forming a horizontal gradient on
the map (Fig. 4c and f). Other parameters were locally aggregated and
did not show outstanding gradients on the SOM. When the SOM was
further trained in each phase separately, the component profiles
showed similar configurations across phases under both conditions.
Profiles of input parameters in different phases and conditions are
given in the Supplementary file.

The six typicalmovement patternswere commonly identified across
phases in both conditions (Fig. 5) according to clusters on the SOM as
shown in Fig. 4a. Similarly the movement patterns were in accordance
with the parameter profiles for the SOM trained for each phase sepa-
rately (Figs. S1–S4). The movement patterns were also similarly associ-
ated with the SOM clustering for each phase in different conditions.
These movements represented the following patterns (Fig. 5): pattern
1, rightward advancement; pattern 2, leftward advancement; pattern
3, right turn; pattern 4, left turn; pattern 5, stop; and pattern 6, stop
and advancement. Considering the difficulty of direction identification
immediately before (or after) being in amotionless state, “stop” and “ad-
vancement” are defined as the present movement direction sufficiently
identifiable before (or after) the motionless state (i.e., a slightly longer
duration). “Stop” was inclusively defined to cover both motionless and
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immediate initiation ofmovement (i.e., the overallmaximummovement
less than 2 cm per second from 0 cm per second), whereas “advance-
ment” was defined as the stage when movement direction could be
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and locomotion as shown in cluster 4 in Fig. 4a, for instance. Overall, lin-
ear advancementmovement (patterns 1 and 2)were in associationwith
linear parameters (speed, and locomotory rate) whereas directional
changes (patterns 3 and 4) matched angular parameters (turning rate
and meander). Stop patterns (patterns 5 and 6) were further in accor-
dance with stop-related parameters (stop duration and stop number)
(Figs. 4a and 5). This association between movement patterns and the
SOMgroupingwas also observed for each phasewhen the SOMwas per-
formed separately for each phase in two conditions although slight vari-
ations were observed in some phases (Figs. S1–S4).

Even though the profiles of parameters were similar across phases,
the frequencies of movement segments varied according to the source
and order of stimuli provision. Fig. 6 shows the frequencies of different
movement segments in different clusters across different phases ac-
cording to Tukey test (n=13). Frequencies were obtained as the num-
ber of segments observed in each cluster divided by the total number of
segments in each phase. Even though the profiles of parameters were
similar (Figs. 4 and S1–S4), the frequencies of movement segments
belonging to different clusters on the SOM varied according to phases
and conditions. Overall, pattern 1 was dominant under condition 1,
whereas pattern 2 appeared to be more abundant than other patterns
under condition 2. These findings indicated an effect of stimulus provi-
sion. When food was provided on the right side of the aquarium under
condition 1, more rightward advancement (i.e., toward food) was ob-
served. In contrast, more leftward advancement away from stimulus
was presentedwhen the predatorwas provided to the arena under con-
dition 2.

Overall, pattern 1 was significantly higher in phase 3 than in other
phases under condition 1 (p b 0.05). It was noteworthy that the right-
ward advancement (pattern 1; toward stimuli) was significantly abun-
dant when food and predator were both present in phase 3. These
rightward advancing movements were abundantly found when test
organisms were away from the stimuli (i.e., left area of the arena), and
seldom observed when close to stimuli. The rightward advancement
significantly decreased after food was removed in phase 4 compared
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with phase 3 (p b 0.05). Under condition 2, the pattern 1 also signifi-
cantly increased in phase 3when foodwas added as the secondary stim-
ulus comparedwith phase 2 (p b 0.05).When predator was removed in
phase 4 in condition 2, the frequency remained in the same level with-
out statistical significance although the frequency tended to decrease
slightly compared with phase 3. The appearance of pattern 1 indicated
that test fish showed directional intention of rightward advancement
(toward food) when food was located together with predator.

Other minor patterns varied according to phases and conditions,
although not as greatly as patterns 1 and 2. Pattern 4 appeared to de-
crease consistently after phase 2 under condition 1, whereas no signifi-
cant changewas observed under condition 2. Under condition 2, pattern
3 significantly increased in phase 4 (p b 0.05). Pattern 6 was notably
high in phase 3 relative to phase 2 (p b 0.05) although the frequency
was not high. These findings indicated that frequency of behavior pat-
ternwas variable by reflecting the effect of conflicting stimuli according
to the source and order. Detailed variations in frequencies of behavioral
aspects will be reported elsewhere.

3.3. Positional patterns and intermittency

For further understanding offishmovement, not only themovement
patterns, we analyzed the positional patterns of a fish during experi-
ment. To present the positional distribution of zebra fish movement
directly, SOM was also trained with the mean and variance of x- and
y-coordinates within the observation arena across phases. Four clusters
were commonly obtained in each phase under conditions 1 and 2
(Figs. 7 and 8). Based on visual judgment, distribution shapes in differ-
ent clusters were defined under different phases and conditions. Over-
all, four basic shapes were initially identified as wide (W), surface (S),
boundary (B), bottom (O), and corner close to stimulus (C). Subse-
quently, more complex shapes were expressed by combining the sym-
bols. For instance, SB and WB indicated a combination of “S and B”
and “Wand B”, respectively, with the first letter indicating higher abun-
dance. In cases in which two patterns contributed equally to movement
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patterns, the symbol “+”was used (e.g., W + B). In addition, the sym-
bol “^”was addedwhen the positionswere located away from the stim-
ulus position (i.e., lower values on the x-coordinate in the arena), such
as B^. Figs. 7 and 8 showed typical distributional shapes according to
the SOM under conditions 1 and 2. In phase 1, the distribution shapes
were commonly classified for both conditions, including surface posi-
tions (S), surface plus boundary positions (SB), wide area (W), and
wide area plus boundary (W+ B).

In phase 2 under condition 1 (initial provision of food), overall pat-
terns did not change greatly from the patterns observed in phase 1,
with S, SB, and W + B commonly being observed (Fig. 7). However,
the pattern of corner positions close to the stimulus, C, was also ob-
served. This was understandable since food was provided to the corner
of the arena in this phase (Fig. 1). When the secondary stimulus, pred-
ator, was added to the arena in phase 3 under condition 1, distribution
patterns changed substantially (Fig. 7). More patterns were found in re-
lation to thewide area, showing wide and boundary positions (W+B),
wide area with boundary away from stimuli (WB^), andwide area with
bottom positions (WO). It should be noted that bottom positions were
newly observed in this phase (Fig. 7). Upon removal of food from the
two stimuli (predator only remaining) in phase 4, wide area (W) and
wide area with boundary (away from stimulus) (WB^) remained, and
surface positions were diversified, including surface movement
(S) and surface movement with boundary (SB) (Fig. 7).

Under condition 2, when the predator was added to the arena in
phase 2, distribution shapes changed substantially relative to phase 1.
Boundary positions away from stimulus (B^) and bottom position
(O) were newly found (Fig. 8). However, distributions related to wide
area, W, were not observed in this phase. With the addition of second-
ary stimulus (food) in phase 3, wide distributions away from stimulus
W^ appeared newly (Fig. 8). Boundary distributions away from stimulus
B^ and the bottom pattern observed in phase 2 were similarly observed
near the corner (OC) in phase 3, but only a few data points were ob-
served in this case. After the predator was removed from two stimuli
in phase 4 under condition 2, surface distribution with bottom (SO)
appeared. It is worth noting that bottom positions, SO and WO, were
observed, even though food only remained in the observation arena.

The distribution patterns were further differentiated in response
to the order of stimuli provision. When both stimuli were present in
phase 3, differences in positional shapes were observed under different
conditions. Under condition 1, wide patterns were more abundant,
whereas the positions away from stimulus (predator and food in this
case) were found (i.e., W^, B^) under condition 2. The bottom pattern
OC was also found in condition 2. However, a trace of the bottom
pattern was still found under condition 1 with WO. The patterns in
phase 4 also reflected the previous phase somewhat, with an additional
tendency for surface patterns under both conditions. It is worth noting
that the pattern of WB that included the area near the stimulus (preda-
tor in this case) was still observed under condition 1. However, the
bottom movement was also found under condition 2 (e.g., WO, SO).
Additionally, the distribution shapes presented individual specificity to
the source of stimuli. Overall, the results indicated that distribution
shapes were formed according to the source and order of stimuli. Pred-
ator produced stronger responses, and the stress effect remained in the
subsequent courses of stimuli provision (i.e., addition of secondary
stimulus and removal of initial stimulus). Additional studies considering
diversified spatial distribution shapes according to individuals will be
reported elsewhere.

Intermittency on speed was measured using the movement data
clustered by the SOM. However, speed showed no clear difference
among phases under different conditions (data not shown). In contrast,
intermittency on acceleration was characteristic and variable according
to the source and order of stimuli. Intermittency generally showed a lin-
ear shape with respect to the shadowing time (x-coordinate) in associ-
ation with the logarithm of abundance (y-coordinate) on the semi-log
plot (Fig. 9). Regression analysis was applied to the data up to 2 s
(data points of early part from 1 to 8 ticks in Fig. 9) considering that
fish may not continuously accelerate longer than 2 s according to pre-
liminary data analysis. Consequently some slopes (matching early
points) appeared to be lower than the whole data points (e.g. phases
2 and 3 in condition 2 in Fig. 9). Statistical significance of the slopes of
the regression equations (Zar, 2009) was more frequently observed
under condition 2 than condition 1 (see Appendix A for slope values
and statistical significance). Overall, distribution shapes related to
surface distribution (e.g., S) were differentiated from shapes related to
wide distribution (e.g., W) under both conditions.

Specifically in phase 1, W-related patterns showed steeper slopes
(absolute value) and were separable from S-related patterns under
both conditions. In phase 2, intermittency was differentiated between
the two conditions for slopes according to statistical results. Under
condition 1, no significancewas observed among the slopes for different
clusters. However, under condition 2, the slope for W was sharply
separated from that of other clusters, indicating a stronger impact
of predator in wide distribution. In phase 3, when both stimuli were
present, variability was strongly demonstrated under condition 2:
slopes for all clusters were significantly different (Fig. 9, Appendix A).
However, the flatter slope for B^ observed in this case was not reliable
due to the limited number of observation points. Under condition 1,
S was significantly different from other clusters in phase 3. In phase 4, a
significantly higher difference was observed under condition 1, separat-
ing all distribution shapes, WB^, S and W. Under condition 2, S was
separated from other clusters. Overall intermittency on acceleration
addressed variation in response behaviors to conflicting stimuli.
It was alsoworth noting that the order of stimuli was influential in deter-
mining intermittency.

4. Discussion

Previous studies reported different behaviors in response to foods
and predators (Houtman and Dill, 1994; Lima, 1998b; Sih and Kats,
1991). However, overall activity wasmainly reported in a static manner
in most cases. In this study, temporal changes in movement patterns
were characterized according to physical expressions (i.e., variation
in parameters during the course of stimuli provision) in response
to stimuli. Notably, the linear parameters (i.e., speed, locomotory rate)
decreased when food was added, whereas the angular parameters
(i.e., turning rate, meander) were lower when predator was added
(Fig. 3). This trend was commonly observed when the stimulus was
provided as either the initial or secondary stimulus, although no statis-
tical significance was observed for the case of secondary stimulus
(Fig. 3). These observations indicate that response behaviors states
under conflicting condition could be characterized by parameters.

Variability of other parameters was also suitable for presenting
additional behavioral states. Observation of the maximum increase in
stop duration and stop number in phase 2 under both conditions, for
instance, supported the existence of stop-related activity responding
to stimuli under both conditions (Fig. 3). These findings are in accor-
dance with those of previous studies reporting decreased movement
in the presence of predators (e.g., Lima, 1998b). Further study would
be required to check parameter changes when the presence or absence
of refuge is critical (Sih and Kats, 1991). In the present study, it was
noteworthy that, when fish were exposed to predators, the option for
more directional change decreased whereas variability in the linear
advancement movement was limited in response to food. However,
the reason why the linear and angular parameters and stop-related
parameters were differentiated in accordance with sequential order of
stimuli provision is currently unknown. More biological and behavioral
investigations to study physiological and behavioral processes should
be conducted in the future. Nevertheless, the present study confirmed
that animal response behavior is unique in response to conflicting stim-
uli (i.e., favorable and unfavorable) provided concurrently, reflecting
the fact that conflicting situations of hunger versus predation represent
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a typical situation that animals have to face frequently and respond to
promptly. However, it is important to note that this experiment was
conducted under limited conditions in which food and predator were
only provided visually within a limited area in this study. Test organ-
isms could not eat food or be caught by the predator; accordingly,
further experiments should be conducted under natural conditions to
confirm the results of the present study.

We also demonstrated information extraction by SOM. SOM training
was useful for characterizing complex behavioral data to provide overall
views regarding response behaviors (Ji et al., 2007; Liu et al., 2011b;
Zhang et al., 2012). Although themovement segmentswere accordingly
classified (i.e., governing role of stop duration, stop number and x- and
y-coordinates) (Fig. 4), the profiles of the parameters were basically
similar across phases (Figs. S1–S4). The SOM was suitable for showing
the invariable structural properties in complex behavior responding to
stimuli in this study. Frequencies of movement segments in different
clusters, however, provided additional information on characterizing
response behaviors, being differentiated according to phases and condi-
tions (Fig. 6). The actual pattern (e.g., rightward advancement shown in
Fig. 5) could be identified in association with the profile of parameters
in this case. For example, patterns 1 and 2 were more commonly ob-
served in the clusters responding to high speed and acceleration
(Figs. 4 and 5). The rightward advancement was characteristically
observed when food was located together with predator in the arena
(Fig. 6). The patterns related to directions changing, right and left
turns (patterns 3 and 4, respectively), were also associated with a
high turning rate and meander. These results indicated that specific
movement patterns were identifiable in response to stimuli.

Some recent papers extended original SOM for different types of
data (Hsu et al., 2002, Hsu et al., 2011; Kiang, 2001). The flexibility of
SOM training was also demonstrated in this paper. SOMs were trained
with different input data: parameter training to find conserving proper-
ty in response behaviors in determining important parameters
(e.g., stop number, stop duration) (Fig. 4), and position data training
to extract variable movement patterns (Figs. 8 and 9). Whereas the
common characters in parameters were found in addressing response
behaviors, the positional parameters could be additionally trained to
present variability in distribution shapes across phases and conditions
(Figs. 7 and 8). The SOMnetworks could be further developed to accom-
modate both regularity and variability in the data concurrently within
one model. In order to deal with complex data, various methods in
SOMs were proposed by maximizing their self-organizing property
(Chon, 2011) including hierarchical SOM (e.g., Carpinteiro et al.,
2007), temporal data patterning (e.g., Hammer et al., 2004; Strickert
and Hammer, 2005), growing SOM (e.g., Bauer and Villmann, 1997),
and modular SOM (Furukawa, 2005). In the future SOMs flexible in
data extraction stated above could be further utilized to trace common
and variable characters of time-series data efficiently.

Acceleration was critical in showing differences in intermittency
(Fig. 9), indicating that “change in speed”, rather than “speed”, is impor-
tant in expressing behavioral data structure. The patterns related to S
and W could be readily differentiable according to acceleration inter-
mittency. Overall, the slopes for S had a low absolute value, indicating
that speed will be variable during surface movement. Accordingly,
changes in speed (i.e., high value in acceleration) would be more likely
during surfacemovement.We also found that the order of stimulus was
important in determining behavioral state in the following course of
stimulus provision. Intermittency was further differentiable in phase 4
when the initial stimulus was removed. Initial provision of predator
had a greater influence on test organisms during the process of second-
ary stimulus provision and removal of initial stimulus (Fig. 9). These
findings indicated that some memory effect (e.g., Turner et al., 2006)
exists in response to stimuli. However, we did not investigate the
time-series response of behavior patterns or quantitatively measure
how the initial impact persisted; accordingly, further studies should
be conducted to evaluate these factors.

Additionally, boundary conditionswere not considered in this study.
Since the arena is small and the movement range of the test organisms
would be longer in nature, the boundary effects also need to be consid-
ered. As shown in Figs. 7 and 8, boundary shapes were frequently ob-
served. However, in this study, we dealt with the boundary shapes as
separate patterns. In the future, behavior processes near boundary
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areas should bemore carefully investigated since site-specific behaviors
were reported in boundaries and corners (Quach et al., 2013).

5. Conclusions

The continuous movement data of zebrafish were useful for eluci-
dating response behaviors in conflicting situation, and behaviors could
be effectively characterized according to different computational
methods. Behavioral states in response to conflicting stimuli (food and
predator) were addressed by parameters, SOM, and intermittency
tests. Parameters could be differentiated according to the source of
stimuli. Linear parameters such as speed, acceleration and locomotory
rate decreased when food was added to the arena, whereas angular
parameters such as turning rate and meander were lower when test
organisms were exposed to predator. According to SOM, parameters
related to position, stop and direction change, played a key role in
determining variance of the movement data, and frequencies in move-
ment patterns were differentiated according to phases and conditions
(e.g., more abundant rightward (toward stimulus) movement after ex-
posure to food). Intermittency on acceleration effectively differentiated
the effect of stimuli provision, separating distribution shapes such as
surface (S) and wide distribution (W). The impact of predator-first in-
troduction was stronger than that of food-first introduction, revealing
the effect of source and order of stimuli. Behaviors responding to stimuli
would be useful for monitoring stress under natural conditions.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ecoinf.2014.10.004.
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Appendix A

Estimates of the slopes based on regression analysis applied to the
Phases Slope values

(Patterns)

Condition 1 1 −0.6719a −0.6920a −0.7130ab −0.7382b

(S) (W + B) (SB) (W)
2 −0.6719a −0.6894a −0.7046a −0.7205a

(C) (SB) (W + B) (S)
3 −0.6789a −0.7159ab −0.7392b −0.7417b

(S) (WO) (SB^) (W + B)
4 −0.5998a −0.7259b −0.7274bc −0.7680bd

(WB^) (S) (SB) (W)
Condition 2 1 −0.6517a −0.6695a −0.6700ab −0.7164b

(S) (SB) (W + B) (W)
2 −0.5176a −0.6675b −0.7065b −0.7132b

(W) (S) (SB) (W + B)
3 −0.6475a −0.7174b −0.7705c −1.0936d

(B^) (W^) (S) (OC)
4 −0.5951a −0.6976b −0.7015b −0.7078b

(S) (SO) (W + B) (WO)
intermittency of acceleration in positional patterns (Figs. 7 and 8) in
each phase in conditions 1 and 2. Alphabets indicate statistical signifi-
cance (p b 0.05) (see text for symbol explanation).
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